Combinatorial Quantum Field Theory and the Jacobian Conjecture

نویسندگان

چکیده

In this short review we first recall combinatorial or (0–dimensional) quantum field theory (QFT). We then give the main idea of a standard QFT method, called intermediate and how to apply method reformulation celebrated Jacobian Conjecture on invertibility polynomial systems. This approach establishes related theorem concerning partial elimination variables that implies reduction generic case quadratic one. Note does not imply solving Conjecture, because one needs introduce supplementary parameter for dimension certain linear subspace where system holds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Approaches to the Jacobian Conjecture

The Jacobian Conjecture is a long-standing open problem in algebraic geometry. Though the problem is inherently algebraic, it crops up in fields throughout mathematics including perturbation theory, quantum field theory and combinatorics. This thesis is a unified treatment of the combinatorial approaches toward resolving the conjecture, particularly investigating the work done by Wright and Sin...

متن کامل

The Jacobian Conjecture as a Problem of Perturbative Quantum Field Theory

The Jacobian conjecture is an old unsolved problem in mathematics, which has been unsuccessfully attacked from many different angles. We add here another point of view pertaining to the so called formal inverse approach, that of perturbative quantum field theory.

متن کامل

Toward a Combinatorial Proof of the Jacobian Conjecture!

The Jacobian conjecture [Keller, Monatsh. Math. Phys., 1939] gives rise to a problem in combinatorial linear algebra: Is the vector space generated by rooted trees spanned by forest shuffle vectors? In order to make headway on this problem we must study the algebraic and combinatorial properties of rooted trees. We prove three theorems about the vector space generated by binary rooted trees: Sh...

متن کامل

Some Combinatorial Aspects of Quantum Field Theory

In this survey we present the appearance of some combinatorial notions in quantum field theory. We first focus on graph polynomials (the Tutte polynomial and its multivariate version) and their relation with the parametric representation of the commutative Φ field theory. We then generalize this to ribbon graphs and present the relation of the Bollobás–Riordan polynomial with the parametric rep...

متن کامل

On the Jacobian Conjecture

The Jacobian Conjecture can be generalized and is established : Let S be a polynomial ring over a field of characteristic zero in finitely may variables. Let T be an unramified, finitely generated extension of S with T = k . Then T = S. Let k be an algebraically closed field, let k be an affine space of dimension n over k and let f : k −→ k be a morphism of algebraic varieties. Then f is given ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Springer proceedings in mathematics & statistics

سال: 2021

ISSN: ['2194-1009', '2194-1017']

DOI: https://doi.org/10.1007/978-3-030-84304-5_10